On Mixed Quermassintegral for Log-Concave Functions
نویسندگان
چکیده
منابع مشابه
Mixed f - divergence and inequalities for log concave functions ∗
Mixed f -divergences, a concept from information theory and statistics, measure the difference between multiple pairs of distributions. We introduce them for log concave functions and establish some of their properties. Among them are affine invariant vector entropy inequalities, like new Alexandrov-Fenchel type inequalities and an affine isoperimetric inequality for the vector form of the Kull...
متن کاملValuations on Log-Concave Functions
A classification of SL(n) and translation covariant Minkowski valuations on log-concave functions is established. The moment vector and the recently introduced level set body of log-concave functions are characterized. Furthermore, analogs of the Euler characteristic and volume are characterized as SL(n) and translation invariant valuations on log-concave functions. 2000 AMS subject classificat...
متن کاملDivergence for s-concave and log concave functions
We prove new entropy inequalities for log concave and s-concave functions that strengthen and generalize recently established reverse log Sobolev and Poincaré inequalities for such functions. This leads naturally to the concept of f -divergence and, in particular, relative entropy for s-concave and log concave functions. We establish their basic properties, among them the affine invariant valua...
متن کاملStability of Pólya-szegő Inequality for Log-concave Functions
A quantitative version of Pólya-Szegő inequality is proven for log-concave functions in the case of Steiner and Schwarz rearrangements.
متن کاملThe Steiner Symmetrization of Log–concave Functions and Its Applications
In this paper, we give a new definition of functional Steiner symmetrizations on logconcave functions. Using the functional Steiner symmetrization, we give a new proof of the classical Prékopa-Leindler inequality on log-concave functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces
سال: 2020
ISSN: 2314-8888,2314-8896
DOI: 10.1155/2020/8811566